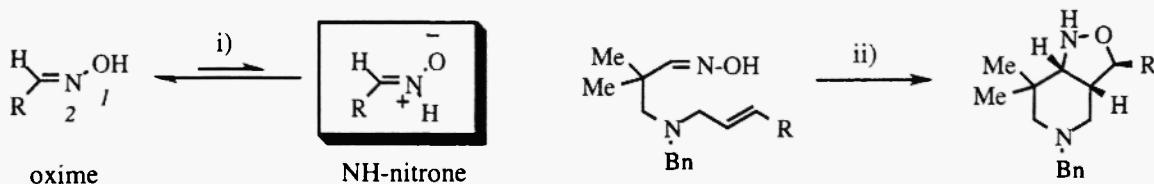
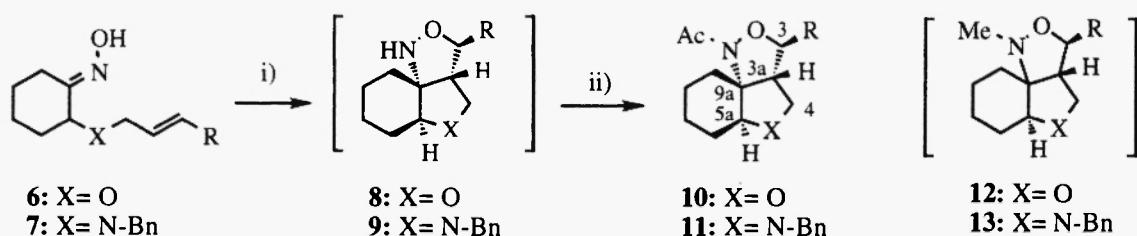
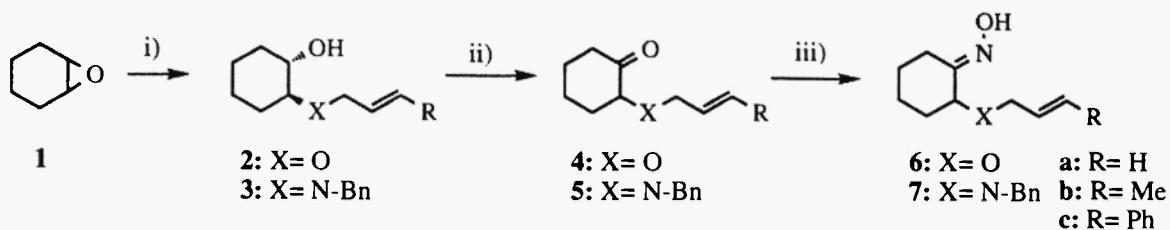


A SIMPLE OXIME-NITRONE ISOMERIZATION AND INTRAMOLECULAR CYCLOADDITION REACTION OF 2-(ALK-2-ENYL)OXY- AND 2-[N-(ALK-2-ENYL)BENZYLAMINO]-CYCLOHEXANONE OXIMES


Michihiko Noguchi,^a* Shigeki Nishimura,^a Hironori Fujii,^a and Akikazu Kakehi^b

^a Department of Applied Chemistry, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube 755-8611, Japan

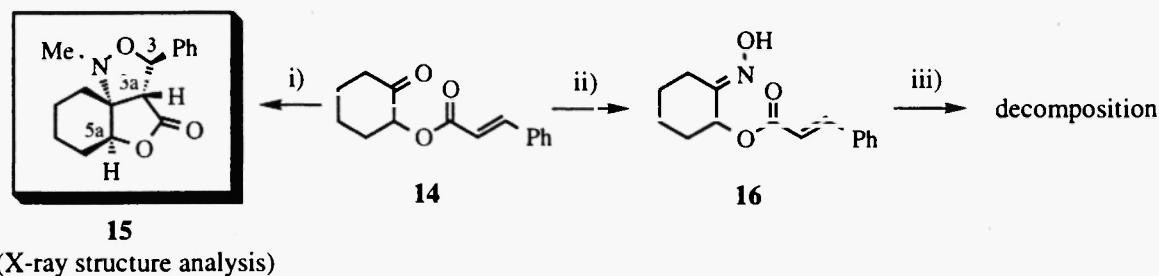
^b Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Wakasato, Nagano, 380-8553, Japan



Abstract: Cyclohexanone oximes **6** and **7** bearing olefinic dipolarophile moieties at the 2-position underwent a thermally induced oxime-olefin cycloaddition reaction under mild conditions leading to isoxazolo[4,3-*c*]benzo[*b*]furan **8** and isoxazolo[4,3-*c*]indole derivatives **9**.

Since a new concept on the isomerization of oxime to nitrone *via* the thermal 1,2-hydrogen shift was proposed by Grigg *et al*¹ and the existence of the resultant NH-nitrona was elucidated by forming intramolecular cycloaddition products (Scheme 1), extensive investigations on the synthesis of highly functionalized isoxazolidine derivatives have been developed by many groups.² Recently, we have also reported the simple oxime-nitrona isomerization and intramolecular nitrona-olefin cycloaddition reaction of 3-(alk-2-enylamino)-propionaldehyde oximes, which afford isoxazolidine derivatives fused to a piperidine ring (Scheme 1).³ In order to extend this synthetic methodology to further functionalized isoxazolidines, we examined the thermal reaction of cyclohexanone oximes bearing olefinic dipolarophile moieties at the 2-position.

Scheme 1 *Reaction and conditions:* i) 1,2-H shift; ii) EtOH or BuOH, reflux, 8–36 h, good to excellent yields

Cyclohexanones **4** and **5** were prepared from cyclohexene oxide (**1**) according to the method reported by Mori *et al*⁴; a nucleophilic ring-opening of epoxide **1** with alcohols and amines was accomplished by neutral alumina catalyst⁵ to give cyclohexanols **2** and **3**, respectively. A Jones oxidation of cyclohexanols **2** and **3** gave cyclohexanones **4** and **5**, which were converted to the desired oximes **6** and **7** by usual treatment with hydroxylamine (Scheme 2). A solution of **6a** in butan-1-ol (BuOH) was heated under reflux for 4 days and a successive work-up gave the oxime-olefin cycloadduct, perhydroisoxazolo[4,3-*c*]benzo[*b*]furan, **8a** in 64% yield together with unchanged **6a** (30%). Similarly, the thermal reaction of oximes **6b** and **6c** in refluxing BuOH or toluene gave tricyclic products **8b** and **8c**, respectively (Table 1). In every case, the starting oximes **8** were not


Table 1. Thermal reaction of 2-[*N*-(alk-2-enyl)oxy]- (**6**) and 2-[*N*-(alk-2-enyl)benzylamino]-cyclohexanone oximes (**7**)

Run	Oxime	X	R	Solvent	Time/h	Cycloadduct (Yield/%)	Recovered oxime
1	6a	O	H	BuOH	96	8a (64)	6a (30)
2	6a	O	H	toluene	96	8a (75)	6a (16)
3	6b	O	Me	BuOH	72	8b (50)	6b (36)
4	6b	O	Me	toluene	72	8b (71)	6b (9)
5	6c	O	Ph	EtOH	48	8c (50)	6c (41)
6	6c	O	Ph	BuOH	48	8c (57)	6c (33)
7	6c	O	Ph	toluene	48	8c (72)	6c (11)
8	7a	N-Bn	H	BuOH	48	9a (56)	7a (16)
9	7b	N-Bn	Me	BuOH	21	9b (48)	a)
10	7b	N-Bn	Me	toluene	10	9b (40)	a)
11	7c	N-Bn	Ph	EtOH	70	9c (55)	a)
12	7c	N-Bn	Ph	toluene	48	9c (64)	a)

a) A mixture of unidentified products was also obtained.

consumed and partially recovered. Interestingly, slightly better results in yields of the oxime-olefin cycloadducts **8** were obtained by the reaction in refluxing toluene in contrast to those which have been reported by us.³ Oximes **7a–c** were also allowed to react and gave perhydroisoxazolo[4,3-*c*]indoles **9a–c** in moderate

yields. Cycloadducts **8** and **9** were obtained as viscous oils except for **9b**. Although the TLC and/or HPLC of **8** and **9** suggested that they should be isolated as single isomers, some of their ¹H and ¹³C-NMR spectra did not give any available information on the stereochemistry of the isoxazolidine ring due to the signal broadening.⁶ In order to obtain further information on this respect, we examined the reaction of cyclohexanones **4** and **5** with *N*-methylhydroxylamine in EtOH under reflux to give the corresponding *N*-methylnitron cycloadducts **12** and **13** in 54–85% yields. However, the stereochemistry of cycloadducts **12** and **13** could not be made clear also due to the signal broadening in their NMR spectra. So, the crude products **8** and **9** were treated with acetic anhydride in benzene to afford *N*-acetylated products **10** and **11**. The structures of *N*-acetylated **10** and **11**, fortunately, could be fully characterized by their ¹H-NMR spectroscopic data compared with those of a related compound. The reaction of **14**, prepared in a similar manner to cyclohexanones **4** and **5**, with *N*-methylhydroxylamine gave the nitron-cycloadduct **15**, the structure of which was unambiguously confirmed by its single-crystal analysis.⁷ The signal patterns and coupling constants in the ¹H-NMR spectra of **10** and **11** are consistent with those of **15** (Table 2). The treatment of ketone **14** with hydroxylamine gave the corresponding oxime **16**. The reaction of oxime **16** in refluxing EtOH gave, unfortunately, an inseparable mixture of products probably due to decomposition of the starting oxime.

Scheme 4 *Reagents and conditions:* i) MeNHOH·HCl (1.5 equiv.), NaOAc (1.5 equiv.), EtOH, reflux, 3 h, 42%; ii) H₂NOH·HCl (1.5 equiv.), NaOAc (1.5 equiv.), MeOH, rt, 6 h, 80%; iii) EtOH, reflux, 4 h

Table 2. Selected ¹H-NMR spectroscopic data for products **10**, **11**, and **15**.

Run	Product	X	R	Chemical shifts/ δ			Coupling constants/ Hz	
				3-H	3a-H	5a-H	J_{3-3a}	J_{5a-6}
1	10a	O	H	3.95 and 4.04	3.03	4.44	0 and 4.3	6.3 and 7.9
2	10b	O	Me	ca. 4.1 ^{a)}	2.73	4.61	ud ^{b)}	6.0 and 6.3
3	10c	O	Ph	5.06	3.16	4.73	4.3	6.3 and 7.9
4	11a	N-Bn	H	3.83 and 3.94	2.85	3.41	1.0 and 4.6	5.0 and 7.6
5	11b	N-Bn	Me	4.01	ca. 2.4 ^{a)}	3.26	4.3	5.6 and 7.6
6	11c	N-Bn	Ph	4.87	2.88	3.45	4.0	5.0 and 7.6
7	15			5.27	3.27	3.93	4.0	5.9 and 6.3

^{a)} Overlapped with another signal.

^{b)} ud: undetermined.

In conclusion, we have described here that cyclohexanone oximes **6** and **7** underwent an oxime-nitron isomerization *via* 1,2-hydrogen shift and that the resultant NH-nitrones were trapped intramolecularly with the

olefinic dipolarophiles to give tricyclic cycloadducts **8** and **9**. These sequences should be utilized as a key step for the synthesis of highly functionalized heterocyclic systems.

Typical Procedures and Spectroscopic Data

A solution of **6c** (0.12 g; 0.49 mmol) in toluene (5 ml) was heated under reflux for 48 h and the solvent was evaporated off. The residue was subjected to a column chromatography on silica gel to give cycloadduct **8c** (0.086 g, 72%) and unchanged **6c** (11%) as elution of hexane-ethyl acetate (4/1). **8c**: Pale yellow oil; IR (NaCl) $\nu_{\text{max}}/\text{cm}^{-1}$ 3190 (NH); ^1H NMR (CDCl_3) δ = 1.20–1.80 (8 H, ov, 6-, 7-, 8- and 9-H₂), 2.10 (1 H, 4-H), 2.61 (1 H, 3a-H), 2.76 (1 H, 5a-H), 3.02 (1 H, 4-H), 3.52–3.81 (2 H, CH_2Ph), 4.74 (1 H, d, J = 4.6 Hz, 4-H), 6.00 (1 H, br s, NH), and 7.24–7.34 (10 H, ov, Ph); ^{13}C NMR (CDCl_3) δ = 21.9, 22.6, 25.8, 31.5 (br), 60.1, 71.6 (br), 77.2, 78.5, 78.8 (br), 126.1, 128.0, 128.7, and 139.3.

A mixture of **8c** (0.10 g, 0.40 mmol), pyridine (0.080 ml, 0.80 mmol), and acetic anhydride (0.038 ml, 0.40 mmol) in benzene (5 ml) was stirred at room temperature for 5 h and usual purification with silica-gel column chromatography gave *N*-acetylated **10c** (0.105 g, 89%) as elution of hexane-ethyl acetate (3/1). **10c**: Pale yellow oil (Found: C, 70.70; H, 7.15; N, 4.68%. $\text{C}_{17}\text{H}_{21}\text{NO}_3$ requires: C, 71.05; H, 7.37; N, 4.87%); IR (NaCl) $\nu_{\text{max}}/\text{cm}^{-1}$ 1630 (CO), ^1H NMR (CDCl_3) δ = 1.19–1.74 (7 H, ov, 6-, 7-, and 8-H₂ and 9-H), 2.20 (3 H, s, Me), 2.35 (1 H, m, 9-H), 3.16 (1 H, m, 3a-H), 3.88 (1 H, dd, J = 4.0 and 9.6 Hz, 4-H), 4.24 (1 H, dd, J = 7.6 and 9.6 Hz, 4-H), 4.73 (1 H, dd, J = 6.3 and 7.9 Hz, 5a-H), 5.06 (1 H, d, J = 4.3 Hz, 3-H), and 7.33–7.43 (5 H, ov, Ph); ^{13}C NMR (CDCl_3) δ = 20.5 and 21.9 (6- and 7-C), 22.4 (MeCO), 27.2 (8-C), 29.7 (9-C), 59.6 (3a-C), 69.8 (4-C), 75.3 (9a-C), 79.5 (5a-C), 86.0 (3-C), 125.5, 128.5, 128.8, and 137.8 (Ph C), and 165.9 (MeCO).

References and Notes

- (1) R. Grigg, H. Q. N. Gunaratne and J. Kemp, *J. Chem. Soc., Perkin Trans. 1*, **1984**, 41; R. Grigg, M. Jordan and A. Tangthongkum, *J. Chem. Soc., Perkin Trans. 1*, **1984**, 47; R. Grigg and S. Thianpantangul, *J. Chem. Soc., Perkin Trans. 1*, **1984**, 653.
- (2) R. Grigg, M. J. Dorrrity, F. Heaney, J. F. Malone, S. Rajviroongit, V. Sridharan and S. Surendrakumar, *Tetrahedron*, 1991, **47**, 8297; A. Hassner, K. M. Loka Natha Rai and W. Dehaen, *J. Org. Chem.*, 1991, **56**, 2775; A. Hassner, S. Singh, R. Sharma and R. Maurya, *Tetrahedron*, 1993, **49**, 2317; A. Hassner, E. Falb, A. Nudelman, A. Albeck and H. E. Gottlieb, *Tetrahedron Lett.*, 1994, **35**, 2397; U. Chiacchio, G. Buemi, F. Casuscelli, A. Procopio, A. Rescifina and R. Romeo, *Tetrahedron*, 1994, **50**, 5503; U. Chiacchio, A. Corsaro, V. Pistarà, A. Rescifina, G. Romeo and R. Romeo, *Tetrahedron*, 1996, **52**, 7875 and references cited therein.
- (3) M. Noguchi, H. Okada, S. Nishimura, Y. Yamagata, S. Takamura, M. Tanaka, A. Kakehi, H. Yamamoto, *J. Chem. Soc., Perkin Trans. 1*, **1999**, 185 and references cited therein.
- (4) M. Mori, F. Saitoh, N. Uesaka, K. Okamoto, T. Date, *J. Org. Chem.*, 1994, **59**, 4993.
- (4) G. H. Posner and D. Z. Rogers, *J. Am. Chem. Soc.*, 1977, **99**, 8208.
- (6) Similar signal broadening was reported for isoxazolidines fused to 5-membered ring; A. Hassner, R. Maurya, O. Friedman, H. E. Gottlieb, *J. Org. Chem.*, 1993, **58**, 4539.
- (7) Crystallographic data for the structure of **15** have been deposited with the Cambridge Crystallographic Data Centre. 12 Union Road, Cambridge CB2 1EZ, UK.

Received on December 16, 1998